

Introduction to Cormetech, Inc

- SCR Catalyst Chemistry
- X-Ray Fluorescence Application.
 - Analyses
 - Challenges
- Summary

Cormetech, Inc

About Cormetech

- A joint equity venture of Corning and Mitsubishi Heavy Industries (MHI)
- Founded in March 1989 with headquarters in Durham, NC
- Manufactures Selective Catalytic Reduction (SCR) Catalyst for the electric power generation, petroleum refining, and chemical industries
- Manufacturing facilities in Durham, NC (1992) & Cleveland, TN (1999)

Manufacturing Facilities

- Located in Cleveland, TN and Durham, NC
- A total of 200,000 sq. ft. manufacturing area and ~ 200,000 sq. ft. warehouse space
- Technologically advanced manufacturing processes

Laboratory Facilities

- State-of-the-art laboratory
- Product / process quality assurance and control
 - Catalyst activity test center (lab reactors simulate power plant catalytic reactors)
- BET Surface Area
- Hg Pore Evaluation
- X-Ray fluorescence.

$4\text{NO} + 4\text{NH}_3 + \text{O}_2 \xrightarrow{\text{Catalyst}} 4\text{N}_2 + 6\text{H}_2\text{O}$

Chemical Analyses

- Chemical composition analysis was originally done by an independent laboratories.
- Due to the need for real-time results and reduced analyses cost, Cormetech Inc, purchased an XRF-Fluorescence unit (ZSX-100e).

X-Ray Fluorescence Application.

- Quantitative Determination of TiO2, V2O5 and WO3.
 - Routine analyses for our raw material, mid-stream and final products.
 - Sample is radiated over a 30 mm diameter.
- Semi quantitative composition analyses:
 - Bulk analysis.
 - Analysis is performed on a pressed pellet of powdered catalyst and a comprehensive scan is performed over a 30 mm diameter, while the sample is spinning.

X-Ray Fluorescence Application.

- Micro-mapping (Surface analyses):
 - Surface analyses are performed on a sample of a single catalyst cell wall approximately 30mm in length.
 - The sample radiation is constricted to a diameter of 1-mm
 - Multiple analyses are conducted for each sample to ensure representative results.

XRF Analyses method

Development of applications:

- Calibration required for both Coal and Gas products.
- Standard samples were precisely made with the same matrix as our normal product by our development team.
 - Standard sample composition confirmed by ICP.
 - Set up the calibration line for each type of product.
 - Validate the calibration line with ICP (multiple lab) analyses of selected gas and coal samples.

• Quality Control of the XRF units.

- A drift correction sample is run weekly to correct for any intensity drift that may have occurs,
- Daily check samples to monitor the integrity of the calibrations line.

XRF-Analyses Method:

Sample Form:

- Noodles: in-process blend of ingredients
- Honeycombs: Final product
- Both are previously calcined (high temperature conversion to ceramic)

Sample Preparation (Bulk analyses):

- Mill the sample to approx 70 microns using a grinder
- Pelletize the milled powder in a 28-ton press
- Remove residual moisture using 300 C and 500 C.
 - Some samples are very hydroscopic, if place directly at 500 C it will crack, therefore the pelletized samples are first place in a 300 C furnace.
- After moisture removal, samples are immediately placed in the XRF unit for compositional analyses.

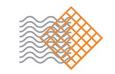
Bulk Analyses

Figure 1: Shows a unknown particles mounted on Binding material.

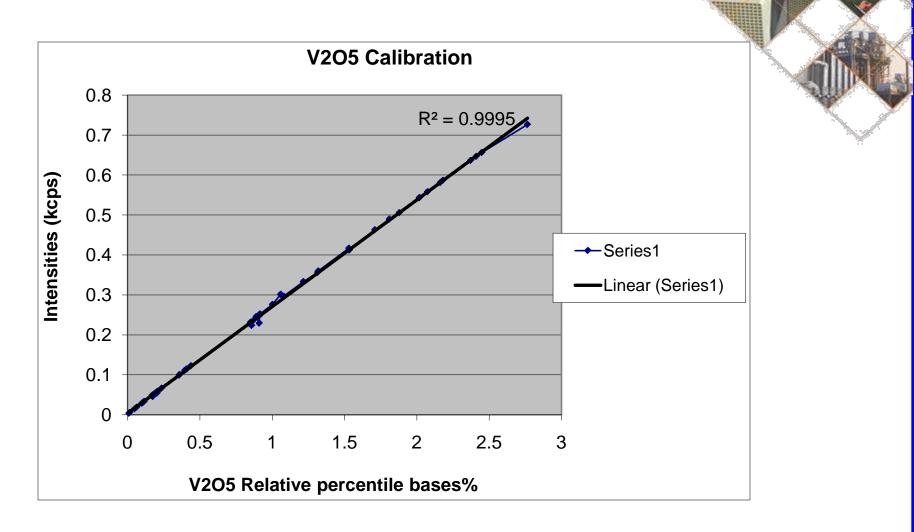
Micro-mapping



Figure 2: The first sample next to the opening represent the inlet of the catalyst while the second samples is a piece of outlet.



Application Challenges:


- 1. V_2O_5 calibration line for all our products.
 - Products are TiO_2 (> 80%) base
 - Use V-KB line, due to Ti-KB and V-KA are too close to each other.
 - A single V_2O_5 calibration line does not give accurate value for all the V_2O_5 ranges, even after matrix correction (absorption/conc).
 - At low levels, V_2O_5 value approx 25 % from expected ICP value .
 - Developed several V_2O_5 calibration line according to the product matrix (e.g., gas and coal products.)

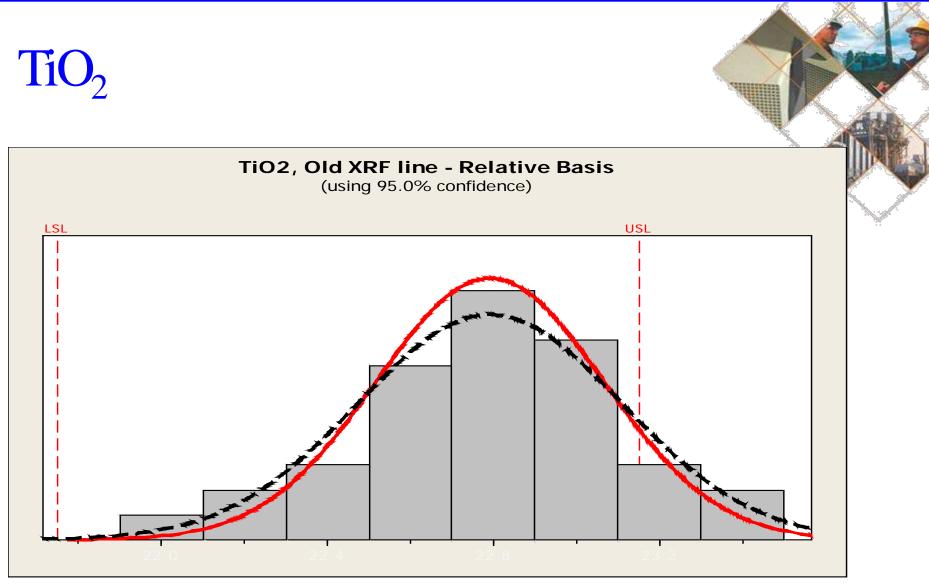
RMETECH

V2O5 Calibration Line

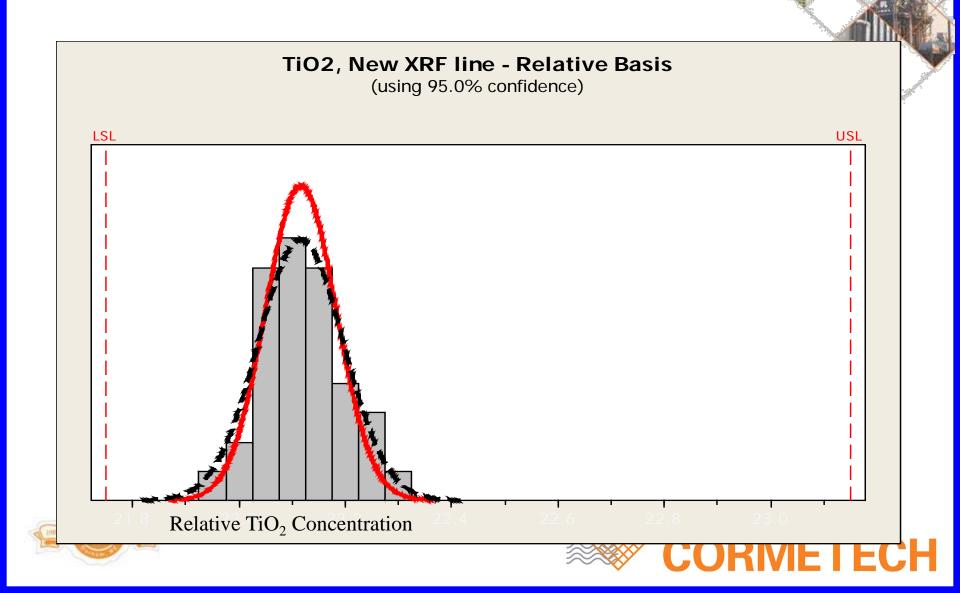
CORMETECH

Fig: 3 Calibration line for V205.

Application Challenges:


TiO₂ Calibration line for gas products.

- Production reported an un-expected increased of TiO₂ Lab started an investigation of root-cause.
 - Reviewed the daily check
 - Reviewed possible drift in calibration.
 - No clear link was found to current calibration
- Action taken:
 - Design a set of standard samples utilizing current production raw material Samples were precisely manufactured by development lab.
 - Created a new calibration line, were ${\rm TiO}_2$ was corrected for Vanadium and Tungsten absorbance.
- Challenges Developing TiO_2 calibration: Non-Reproducible data among ICP laboratories for TiO_2 sample and also comparable to expected values.



Relative TiO₂ Concentration

TiO₂, With mproved XRF line

Application Challenges:

- Qualitative analyses of Cr, Pt and other trace metals.
 - Cr –KA line will interfere with V-KB, and Ti-KB interference with V-KA. Higher levels of V₂O₅ measured when Chromium is present (Fig. 4).



Fig 4: XRF-qualitative scan of sample containing Cr.

ORMETECH

- Utilization of XRF-Fluorescence provides real-time results (quick feedback to production, development and commercial team).
- Decreased outside lab testing needs, therefore decreasing analysis cost.
- Improved TiO₂ testing for gas products by developing a new TiO₂ calibration line.
- The matrix make-up of each product will affect the measurement.

Future Projects.

- Optimization and validation of a Bench-XRF fluorescence unit for lower levels of V₂O₅.
- Improve Surface analyses time.

